Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised Segmentation and Localization Andrea Vedaldi

Introduction

sical ideas from **spectral graph theory**.

Overview

- We take inspiration from pre-deep learning image segmentation methods, which framed segmentation as a graph partitioning problem.
- Our method first utilizes a self-supervised network to extract dense image features.
- We then construct a weighted graph over patches, where edge weights give the semantic affinity of pairs of patches, and we consider the eigendecomposition of this graph's Laplacian.
- We find that without imposing any additional structure, the eigenvectors directly correspond to semantically meaningful regions, and can be used for a wide range of downstream tasks (e.g., localization, segmentation, and matting).
- Broadly, our work demonstrates the potential benefits of combining deep learning with traditional graph-theoretic methods.

Luke Melas-Kyriazi

Christian Rupprecht Iro Laina

Visual Geometry Group, University of Oxford

Methods

Spectral Decomposition

Object Localization & Segmentation

Semantic Segmentation

Input RGB Image

Extracted RGBA Foreground

Project Page: https://bit.ly/spectral-seg

UNIVERSITY OF OXFORD

Image Matting

Laplacian Eigenvectors of the matting Laplacian augmented with self-supervised features

Failure Cases