Deep Spectral Methods: A Surprisingly Strong Baseline for Unsupervised Segmentation and Localization
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segmentation methods, which framed
segmentation as a graph partitioning problem.
- Our method first utilizes a self-supervised network
to extract dense image features. Extaceed RGBA
oregroun
- We then construct a weighted graph over patches,
where edge weights give the semantic affinity of

pairs of patches, and we consider the
eigendecomposition of this graph’s Laplacian.

Object Localization & Segmentation Failure Cases

- We find that without imposing any additional
structure, the eigenvectors directly correspond to
semantically meaningful regions, and can be usead

for a wide range of downstream tasks (e.g.,

ocalization, segmentation, and matting).
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- Broadly, our work demonstrates the potential

f

nenefits of combining deep learning with
traditional graph-theoretic methods.
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